Mark Scheme 4724
 January 2007

1	Factorise numerator and denominator Num $=(x+6)(x-4)$ or denom $=x(x-4)$ Final answer $=\frac{x+6}{x}$ or $1+\frac{6}{x}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	or Attempt long division $\begin{aligned} \text { Result } & =1+\frac{6 x-24}{x^{2}-4 x} \\ & =1+\frac{6}{x} \end{aligned}$
2	Use parts with $u=\ln x, \mathrm{~d} v=x$ Obtain $\frac{1}{2} x^{2} \ln x-\int \frac{1}{x} \cdot \frac{1}{2} x^{2}(\mathrm{~d} x)$ $=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2} \quad(+\mathrm{c})$ Use limits correctly Exact answer $2 \ln 2-\frac{3}{4}$	M1 A1 A1 M1 A1 5	\& give $1^{\text {st }}$ stage in form $\mathrm{f}(x)+/-\int \mathrm{g}(x)(\mathrm{d} x)$ or $\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x(\mathrm{~d} x)$ AEF ISW
3	(i) Find $\boldsymbol{a}-\boldsymbol{b}$ or $\boldsymbol{b}-\boldsymbol{a}$ irrespective of label Method for magnitude of any vector $\sqrt{161}$ or 12.7(12.688578) (ii) Using $(\overline{\mathrm{AO}}$ or $\overline{\mathrm{OA}})$ and $(\overline{\mathrm{AB}}$ or $\overline{\mathrm{BA}})$ $\cos \theta=\frac{\text { scalar product of any two vectors }}{\text { product of their moduli }}$ 43 or better ($42.967 \ldots$), 0.75 or better (0.7499218 ..	M1 M1 A1 3 B1 M1 A1 3	(expect $11 \mathbf{i}-2 \mathbf{j}-6 \mathbf{k}$ or $-11 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}$) Do not class angle $A O B$ as MR If 137 obtained, followed by 43 , award A0 Common answer 114 probably \rightarrow B0 M1 A0
4	Attempt to connect $\mathrm{d} x$ and d u For $\mathrm{d} u=2 \mathrm{~d} x$ AEF correctly used $\int u^{8}+u^{7}(\mathrm{~d} u)$ Attempt new limits for u at any stage (expect 0,1) $\frac{17}{72}$ S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answe	M1 A1 A1 M1 A1 5 $\frac{68}{72}, \frac{34}{36}$ or $\frac{17}{18}$	but not just $\mathrm{d} x=\mathrm{d} u$ sight of $\frac{1}{2}(\mathrm{~d} u)$ necessary or $\int u^{7}(u+1)(\mathrm{d} u)$ or re-substitute \& use ($\frac{5}{2}, 3$) AG WWW ISW
5	(i) Show clear knowledge of binomial expansion $\begin{aligned} & =1+x \\ & +2 x^{2} \\ & +\frac{14}{3} x^{3} \end{aligned}$ (ii) Attempt to substitute $x+x^{3}$ for x in (i) Clear indication that $\left(x+x^{3}\right)^{2}$ has no term in x^{3} $\frac{17}{3}$	M1 B1 A1 A1 4 M1 A1 لA1 3	$-3 x$ should appear but brackets can be missing; $-\frac{1}{3} .-\frac{4}{3}$ should appear, not $-\frac{1}{3} \cdot \frac{2}{3}$ Correct first 2 terms; not dep on M1 Not just in the $\frac{14}{3} x^{3}$ term f.t. $\operatorname{cf}(x)+\operatorname{cf}\left(x^{3}\right)$ in part (i)
6	$\begin{aligned} & \text { (i) } 2 x+1=/ \equiv A(x-3)+B \\ & A=2 \\ & B=7 \\ & \begin{array}{l} \text { (ii) } \int \frac{1}{x-3}(\mathrm{~d} x)=\ln (x-3) \text { or } \ln \|x-3\| \\ \int \frac{1}{(x-3)^{2}}(\mathrm{~d} x)=-\frac{1}{x-3} \\ 6+2 \ln 7 \quad \text { Follow-through } \frac{6}{7} B+A \ln 7 \end{array} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A/B 1 } & \mathbf{3} \\ \text { B1 } & \\ \text { B1 } & \\ \text { VB2 } & \mathbf{4} \end{array}$	Cover-up rule acceptable for B1 Accept A or $\frac{1}{A}$ as a multiplier Accept B or $\frac{1}{B}$ as a multiplier

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{dy}}{\mathrm{~d} x}
$$

$$
4 x+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Obtain $4 x+y=0 \quad$ AEF
Attempt to solve simultaneously with eqn of curve
Obtain $x^{2}=1$ or $y^{2}=16$ from $4 x+y=0$ $(1,-4)$ and $(-1,4)$ and no other solutions
$8 \quad$ (i) Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ and $-\frac{1}{m}$ for grad of normal $=-p$

AG WWW
(ii) Use correct formula to find gradient of line

Obtain $\frac{2}{p+q}$
AG WWW
(iii) State $-p=\frac{2}{p+q}$

Simplify to $p^{2}+p q+2=0$ AG WWW
(iv) $(8,8) \rightarrow t$ or p or $q=2$ only

Subst $p=2$ in eqn (iii) to find q_{1}
Subst $p=q_{1}$ in eqn (iii) to find q_{2}
$q_{2}=\frac{11}{3} \rightarrow\left(\frac{242}{9}, \frac{44}{3}\right)$
$9 \quad$ (i) Separate variables as $\int \sec ^{2} y d y=2 \int \cos ^{2} 2 x d x$
LHS $=\tan y$
RHS; attempt to change to double angle
Correctly shown as $1+\cos 4 x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
Completely correct equation (other than +c)
+c on either side
(ii) Use boundary condition
c $($ on RHS $)=1$
Substitute $x=\frac{1}{6} \pi$ into their eqn, produce $y=1.05$
$\mathbf{1 0} \quad$ (i) For (either point) $+t$ (diff between posn vectors) $\mathbf{r}=($ either point $)+t(\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$ or $\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$
(ii) $\mathbf{r}=s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$ or $(\mathbf{i}+2 \mathbf{j}-\mathbf{k})+s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$

Eval scalar product of $\mathbf{i}+2 \mathbf{j}-\mathbf{k} \&$ their dir vect in (i) Show as $(1 \mathrm{x} 1$ or 1$)+(2 \mathrm{x}-2$ or -4$)+(-1 \mathrm{x}-3$ or 3$)$
$=0 \quad$ and state perpendicular \quad AG
(iii) For at least two equations with diff parameters

Obtain $t=-2$ or $s=3$ (possibly -3 or 2 or -2)
Subst. into eqn $A B$ or $O T$ and produce $3 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$
(iv) Indicate that $|\overline{O C}|$ is to be found
$\sqrt{54}$;f.t. $\sqrt{a^{2}+b^{2}+c^{2}}$ from $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ in
(iii)

In the above question, accept any vectorial notation
t and s may be interchanged, and values stated above need to be treated with caution.
In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct - but check.

